Human parsing aims to partition humans in image or video into multiple pixel-level semantic parts. In the last decade, it has gained significantly increased interest in the computer vision community and has been utilized in a broad range of practical applications, from security monitoring, to social media, to visual special effects, just to name a few. Although deep learning-based human parsing solutions have made remarkable achievements, many important concepts, existing challenges, and potential research directions are still confusing. In this survey, we comprehensively review three core sub-tasks: single human parsing, multiple human parsing, and video human parsing, by introducing their respective task settings, background concepts, relevant problems and applications, representative literature, and datasets. We also present quantitative performance comparisons of the reviewed methods on benchmark datasets. Additionally, to promote sustainable development of the community, we put forward a transformer-based human parsing framework, providing a high-performance baseline for follow-up research through universal, concise, and extensible solutions. Finally, we point out a set of under-investigated open issues in this field and suggest new directions for future study. We also provide a regularly updated project page, to continuously track recent developments in this fast-advancing field: https://github.com/soeaver/awesome-human-parsing.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
This paper presents SimVTP: a Simple Video-Text Pretraining framework via masked autoencoders. We randomly mask out the spatial-temporal tubes of input video and the word tokens of input text and then feed them into a unified autencoder to reconstruct the missing pixels and words. Our SimVTP has several properties: 1) Thanks to the unified autoencoder, SimVTP reconstructs the masked signal of one modality with the help from another modality, which implicitly learns the cross-modal alignment between video tubes and text tokens. 2) SimVTP not only benefits from a high video masking ratio (e.g. 90%) due to the temporal redundancy of video, but also needs a high text masking ratio (e.g. 75%), which is much higher than BERT (e.g. 15%), to achieve optimal performance. This is because the aid of video modality makes text reconstruction less challenging, which thus needs a higher mask ratio to make the pretext harder for useful feature learning. 3) Equipping SimVTP with video-text contrastive learning (VTC) and video-text matching (VTM), which are two commonly used cross-modal training strategies, could further improve the transferable performance significantly. 4) SimVTP is dataefficent, e.g., pre-training only on 10% data of WebVid-2M, SimVTP achieves surprisingly good results (43.8 R@1) on MSRVTT, which is far above recent state-of-the-art methods pre-trained on both CC3M and WebVid-2M. We transfer our pre-trained model to various downstream tasks and achieve superior performance. The codes and models will be released at https://github.com/mayuelala/SimVTP.
translated by 谷歌翻译
Recently, a surge of high-quality 3D-aware GANs have been proposed, which leverage the generative power of neural rendering. It is natural to associate 3D GANs with GAN inversion methods to project a real image into the generator's latent space, allowing free-view consistent synthesis and editing, referred as 3D GAN inversion. Although with the facial prior preserved in pre-trained 3D GANs, reconstructing a 3D portrait with only one monocular image is still an ill-pose problem. The straightforward application of 2D GAN inversion methods focuses on texture similarity only while ignoring the correctness of 3D geometry shapes. It may raise geometry collapse effects, especially when reconstructing a side face under an extreme pose. Besides, the synthetic results in novel views are prone to be blurry. In this work, we propose a novel method to promote 3D GAN inversion by introducing facial symmetry prior. We design a pipeline and constraints to make full use of the pseudo auxiliary view obtained via image flipping, which helps obtain a robust and reasonable geometry shape during the inversion process. To enhance texture fidelity in unobserved viewpoints, pseudo labels from depth-guided 3D warping can provide extra supervision. We design constraints aimed at filtering out conflict areas for optimization in asymmetric situations. Comprehensive quantitative and qualitative evaluations on image reconstruction and editing demonstrate the superiority of our method.
translated by 谷歌翻译
We propose a Cascaded Buffered IoU (C-BIoU) tracker to track multiple objects that have irregular motions and indistinguishable appearances. When appearance features are unreliable and geometric features are confused by irregular motions, applying conventional Multiple Object Tracking (MOT) methods may generate unsatisfactory results. To address this issue, our C-BIoU tracker adds buffers to expand the matching space of detections and tracks, which mitigates the effect of irregular motions in two aspects: one is to directly match identical but non-overlapping detections and tracks in adjacent frames, and the other is to compensate for the motion estimation bias in the matching space. In addition, to reduce the risk of overexpansion of the matching space, cascaded matching is employed: first matching alive tracks and detections with a small buffer, and then matching unmatched tracks and detections with a large buffer. Despite its simplicity, our C-BIoU tracker works surprisingly well and achieves state-of-the-art results on MOT datasets that focus on irregular motions and indistinguishable appearances. Moreover, the C-BIoU tracker is the dominant component for our 2-nd place solution in the CVPR'22 SoccerNet MOT and ECCV'22 MOTComplex DanceTrack challenges. Finally, we analyze the limitation of our C-BIoU tracker in ablation studies and discuss its application scope.
translated by 谷歌翻译
This is our 2nd-place solution for the ECCV 2022 Multiple People Tracking in Group Dance Challenge. Our method mainly includes two steps: online short-term tracking using our Cascaded Buffer-IoU (C-BIoU) Tracker, and, offline long-term tracking using appearance feature and hierarchical clustering. Our C-BIoU tracker adds buffers to expand the matching space of detections and tracks, which mitigates the effect of irregular motions in two aspects: one is to directly match identical but non-overlapping detections and tracks in adjacent frames, and the other is to compensate for the motion estimation bias in the matching space. In addition, to reduce the risk of overexpansion of the matching space, cascaded matching is employed: first matching alive tracks and detections with a small buffer, and then matching unmatched tracks and detections with a large buffer. After using our C-BIoU for online tracking, we applied the offline refinement introduced by ReMOTS.
translated by 谷歌翻译
This is our second-place solution for CVPR 2022 SoccerNet Tracking Challenge. Our method mainly includes two steps: online short-term tracking using our Cascaded Buffer-IoU (C-BIoU) Tracker, and, offline long-term tracking using appearance feature and hierarchical clustering. At each step, online tracking yielded HOTA scores near 90, and offline tracking further improved HOTA scores to around 93.2.
translated by 谷歌翻译
Deep Convolutional Neural Networks (DCNNs) have exhibited impressive performance on image super-resolution tasks. However, these deep learning-based super-resolution methods perform poorly in real-world super-resolution tasks, where the paired high-resolution and low-resolution images are unavailable and the low-resolution images are degraded by complicated and unknown kernels. To break these limitations, we propose the Unsupervised Bi-directional Cycle Domain Transfer Learning-based Generative Adversarial Network (UBCDTL-GAN), which consists of an Unsupervised Bi-directional Cycle Domain Transfer Network (UBCDTN) and the Semantic Encoder guided Super Resolution Network (SESRN). First, the UBCDTN is able to produce an approximated real-like LR image through transferring the LR image from an artificially degraded domain to the real-world LR image domain. Second, the SESRN has the ability to super-resolve the approximated real-like LR image to a photo-realistic HR image. Extensive experiments on unpaired real-world image benchmark datasets demonstrate that the proposed method achieves superior performance compared to state-of-the-art methods.
translated by 谷歌翻译
Face super-resolution is a domain-specific image super-resolution, which aims to generate High-Resolution (HR) face images from their Low-Resolution (LR) counterparts. In this paper, we propose a novel face super-resolution method, namely Semantic Encoder guided Generative Adversarial Face Ultra-Resolution Network (SEGA-FURN) to ultra-resolve an unaligned tiny LR face image to its HR counterpart with multiple ultra-upscaling factors (e.g., 4x and 8x). The proposed network is composed of a novel semantic encoder that has the ability to capture the embedded semantics to guide adversarial learning and a novel generator that uses a hierarchical architecture named Residual in Internal Dense Block (RIDB). Moreover, we propose a joint discriminator which discriminates both image data and embedded semantics. The joint discriminator learns the joint probability distribution of the image space and latent space. We also use a Relativistic average Least Squares loss (RaLS) as the adversarial loss to alleviate the gradient vanishing problem and enhance the stability of the training procedure. Extensive experiments on large face datasets have proved that the proposed method can achieve superior super-resolution results and significantly outperform other state-of-the-art methods in both qualitative and quantitative comparisons.
translated by 谷歌翻译
Myocardial pathology segmentation (MyoPS) can be a prerequisite for the accurate diagnosis and treatment planning of myocardial infarction. However, achieving this segmentation is challenging, mainly due to the inadequate and indistinct information from an image. In this work, we develop an end-to-end deep neural network, referred to as MyoPS-Net, to flexibly combine five-sequence cardiac magnetic resonance (CMR) images for MyoPS. To extract precise and adequate information, we design an effective yet flexible architecture to extract and fuse cross-modal features. This architecture can tackle different numbers of CMR images and complex combinations of modalities, with output branches targeting specific pathologies. To impose anatomical knowledge on the segmentation results, we first propose a module to regularize myocardium consistency and localize the pathologies, and then introduce an inclusiveness loss to utilize relations between myocardial scars and edema. We evaluated the proposed MyoPS-Net on two datasets, i.e., a private one consisting of 50 paired multi-sequence CMR images and a public one from MICCAI2020 MyoPS Challenge. Experimental results showed that MyoPS-Net could achieve state-of-the-art performance in various scenarios. Note that in practical clinics, the subjects may not have full sequences, such as missing LGE CMR or mapping CMR scans. We therefore conducted extensive experiments to investigate the performance of the proposed method in dealing with such complex combinations of different CMR sequences. Results proved the superiority and generalizability of MyoPS-Net, and more importantly, indicated a practical clinical application.
translated by 谷歌翻译